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Introduction

The use of ideal polyhedra to define the spatial arrangement
of a set of atoms is consubstantial with the development of
structural chemistry in the 20th century. Such polyhedra can
represent, for instance, a group of chemically bonded atoms,
as in clusters or cage compounds, a set of ions held together
by a Madelung potential and repeated periodically in an ex-
tended solid, or bonded to a single atom occupying the
center of the polyhedron, as in coordination compounds. Al-
though there are infinite ways in which a given number of
atoms can in principle be organized in space, the polyhedral
paradigm works surprisingly well in a number of cases.
Hence, we tend to describe tetracoordinate transition-metal

atoms as tetrahedral or square-planar. We also refer to
some polycyclic alkanes as cubanes, prismanes, or dodecahe-
dranes. The organization of molecular building blocks in
larger (supramolecular) units is also efficiently represented
by polyhedra or polygons of a given set of atoms that are
connected by chemical units spanning the edges or the faces,
such as the Fe8 octagons in the so-called iron wheels that ex-
hibit single-molecule magnet behavior. Most of inorganic
solid-state materials are described as polyhedra connected
in a variety of ways. However, the use of ideal polyhedra is
not always straightforward. In many instances a structure
deviates significantly from the ideal shapes and the stereo-
chemical descriptions become highly imprecise, for example,
slightly distorted octahedron or highly distorted tetrahedron.
Furthermore, the assignment of a structure to one of the
possible ideal polyhedra is often more a matter of taste than
the result of the application of clearly established criteria.
Let us take as a further example the descriptions given to
the environment of the alkaline earth cations in the garnet
structures: as noted by O�Keeffe and Hyde,[1] different au-
thors have referred to a “skew cube”, a “distorted square
antiprism”, and a “distorted dodecahedron”. How can the
same structure be described by three polyhedra that are
quite different in symmetry and in terms of interatomic dis-
tances? The problem of assigning an ideal polyhedron to a
structure increases with increasing number of atoms, since
the number of available polyhedra increases, and they differ
from each other in smaller atomic displacements.
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Following the proposal of Avnir et al.[2,3] that symmetry
and polyhedral shape can be defined in terms of continuous
properties that can be quantified from structural data, we
have developed a project aimed at evaluating the applicabil-
ity of such continuous symmetry measures (CSM) and con-
tinuous shape measures (CShM) to inorganic systems. The
usefulness of these measures for the stereochemical analysis
of very large sets of molecular structures has been shown so
far for the cases of four-,[4] six-,[5] and seven-vertex[6] poly-
hedra. Also a new way to define at a quantitative level
those structures that are in-between two reference poly-
hedra has been developed by the definition of minimal dis-
tortion interconversion pathways and the corresponding
path deviation functions.[7] The previous results have encour-
aged us to undertake a broad study of eight-vertex chemical
structures, which are usually difficult to analyze and for
which general stereochemical studies were reported more
than two decades ago.[8–11] More recent reviews mostly con-
centrate on the description of the characteristic eight-vertex
polyhedra and analyze a limited set of experimental struc-
tural data.[12, 13] Incorporation of more recent structural data
together with application of CShM thus seemed timely.
Here we present first a brief summary of the CShM con-
cepts and methodology. Then we present the collection of
ideal eight-vertex polyhedra used for our stereochemical
study and discuss the criteria adopted for our choice of ideal
reference shapes. Then we report the results of applying our
method to different families of eight-vertex chemical struc-
tures: 1) transition-metal coordination compounds, analyzed
by electron configuration and by families according to li-
gands; 2) edge-bonded polyhedra, including cubane struc-
tures, the polyhedra associated with the structure of realgar,
and metal clusters; 3) octanuclear transition-metal supra-
molecular architectures; and 4) extended structures in inor-
ganic solids.

Results and Discussion

Continuous shape measures : The continuous symmetry
(CSM) and shape (CShM) measures proposed by Avnir
et al.[2,14] essentially allow one to numerically evaluate by
how much a particular structure deviates from an ideal sym-
metry or from an ideal shape (e.g., a polyhedron). The
CShM relative to a polyhedron P for a set of N atoms (in
the present case N=8 for empty polyedra and N=9 for
centered polyhedra), characterized by their position vectors
Qi, is defined by Equation (1), where Pi is the position
vector of the corresponding vertex in the reference poly-
hedron P, and Q0 the position vector of the geometrical
center of the problem structure.

SQðPÞ ¼ min

PN
i¼1
jQi�Pij2

PN
i¼1
jQi�Q0j2

100 ð1Þ

The minimum is taken for all possible relative orienta-
tions in space, isotropic scaling, and for all possible pairings
of the vertices of the problem and reference polyhedra. As
a consequence, two shapes are identical within the CShM
approach if they differ only in size and/or orientation in
space. For the study of coordination compounds, only those
vertex permutations that leave the metal atom in the center
of the polyhedron are considered. With such a definition,
SQ(P)= 0 corresponds to a structure Q fully coincident in
shape with the reference polyhedron P, whereas the maxi-
mum allowed value is SQ(P)=100, which corresponds to the
hypothetical case in which all atoms of Q occupy the same
point in space.

Although we have referred so far to a methodology that
can be applied to the calculation of symmetry or shape
measures, we must be aware of the analogies and differences
between shape and symmetry. Such a difference becomes
clear if we consider a polyhedron for which the symmetry
does not fully determine its geometry, as for the hexagonal
bipyramid. We show three such bipyramids 1 a–1 c that
differ in the ratio between width and height but all have full
D6h symmetry. For those cases in which the choice of a refer-
ence polyhedron with a given symmetry is not unique, we
actually have two choices for the definition of its Pi coordi-
nates: either we search for the nearest polyhedron that has
the desired symmetry or we establish a conventional poly-

Abstract in Catalan: En aquest article es presenta un estudi
estereoqu�mic d’estructures amb vuit v�rtexs basat en les me-
sures cont�nues de forma (CShM). Es presenten els pol�edres
de refer�ncia, els mapes de forma i els camins d’intercon-
versi� de m�nima distorsi� per a estructures poli�driques i po-
ligonals amb vuit v�rtexs, dins el marc de les CShM. S’ana-
litza l’aplicaci� d’aquestes eines estereoqu�miques a diverses
fam�lies d’estructures experimentals: (a) pol�edres de coordi-
naci� en compostos moleculars de metalls de transici�, classi-
ficats tant per configuraci� electr�nica del metall com per
tipus de lligands; (b) pol�edres amb enllaÅos a les arestes, in-
cloent estructures de tipus cub�, clfflsters met�l·lics i el real-
gar; (c) arquitectures supramoleculars octanuclears de metalls
de transici� i (d) pol�edres de coordinaci� en estructures infi-
nites de s�lids inorg�nics. La classificaci� estructural es facili-
ta molt mitjanÅant l’ffls d’aquestes eines, i la detecci� d’estruc-
tures poc comunes, com ara el girobifastigi �s immediata.
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hedron relative to which we calculate the measures accord-
ing to Equation (1). The CSM is S(D6h)= 0 for 1 a–1 c. On
the other hand, if we choose one of those bipyramids (e.g.,
1 b) as our conventional polyhedron (let us call it HBPY),
then we obtain a CShM. The resulting shape measure
S(HBPY) will be zero only for the conventional bipyramid,
but nonzero for the other two bipyramids 1 a and 1 c. A bi-
pyramid that can be made coincident with the conventional
one by translation, rotation, or isotropic scaling will have
S(HBPY)=0, that is, it has the same shape. Since the shape
criterion is in general more restrictive than the symmetry
approach, it has been found adequate in the case of eight-
vertex polyhedra to define conventional reference polyhedra
and use the corresponding shape measures throughout this
paper. However, for two eight-vertex geometries, shape and
symmetry are equivalent, and these are the cube and the
regular octagon.

Another example of this behavior is the relationship be-
tween the dodecahedron (DD) and the snub disphenoid
(SD). Both have the same symmetry (D2d), but their shapes
are different. Then, the CSM from D2d is zero for the two
structures, but the CShM from one to the other is nonzero
(SDD(SD)= SSD(DD)¼6 0).

Eight-vertex reference poly-
hedra : The first step of our ste-
reochemical study aimed at as-
signing an ideal polyhedral ge-
ometry to specific groups of
atoms is perforce to define the
reference polyhedra (including
the planar polygons). From pre-
vious work, we have found it
useful to consider as ideal
shapes the regular polygons, the
Platonic solids, the Archime-
dean polyhedra, the prisms, and
the antiprisms.[15] All other
polyhedra (92 in total) having
regular polygons as faces and
between 5 and 75 vertices are
known as Johnson polyhedra[16]

and are also useful as stereochemical descriptors, even if
they are far less commonly used. The corresponding shapes
with eight vertices are schematically represented in
Scheme 1, together with the abbreviations used throughout
this paper. We present a relatively large number of poly-
hedra here not just for comprehensiveness, but because it
will be seen below that one can find examples of chemical
structures for each of these shapes with the exception of the
heptagonal pyramid. The main characteristics of our ideal
shapes, summarized in Table 1, are briefly discussed here.[17]

The regular octagon (OP), the cube (CU), and the triakis-
tetrahedron (TT) are univocally defined shapes, as deter-
mined by their symmetries (D8h, Oh, and Td, respectively)
and, in the last-named case, by the condition of being the
dual of the truncated tetrahedron. The triakis tetrahedron

has the shape shown in 2 a-–2 c, with 12 faces and 18 edges
and is a nonconvex polyhedron having two types of vertices
at different distances from the geometrical center, the ratio
between the long and short distances being 1.218. This poly-
hedron can be described as resulting from capping each face
of a tetrahedron (2 a), but also as resulting from the super-

Scheme 1.

Table 1. Names, abbreviations, and main characteristics of the ideal eight-vertex polyhedra used as references
in this work. The prefix J- indicates a Johnson polyhedron, and the prefix s- indicates the spherical version of
the corresponding polyhedron.

Ideal shape Abbreviation Symmetry Regular Equiv Spherical Equiv
faces faces edges

octagon OP D8h – – yes yes
cube CU Oh yes yes yes yes
triakis-tetrahedron TT Td no yes no no
square antiprism SAPR D4d yes no yes yes
snub disphenoid J-SD Td yes yes no yes
triangular dodecahedron DD D2d no no imposed no
gyrobifastigium J-GBF D2d yes no no yes
biaugmented trigonal prism J-BTP C2v yes no no no

s-BTP C2v no no imposed no
elongated trigonal bipyramid J-ETBP D3h yes no no no

s-ETBP D3h no no imposed no
heptagonal pyramid HPY D7h no no imposed no
hexagonal bipyramid HBPY D6h no no imposed no
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position of two tetrahedra with a common center (2 b) or as
a distorted cube (2 c).

Other ideal polyhedra are univocally defined if we require
all their faces to be regular polygons (i.e. , all edges of the
same length, coincident with the definition of the Johnson
polyhedra), as is the case for the square antiprism (SAPR).
The ideal SAPR adopted here (3), coincident with that of a

hard-spheres model, has twelve identical L�L distances
(dL�L =1.215 dM�L), and its edges subtend angles with the
geometric center of a= 74.85, b= 85.48, and g= 119.528 . In
other cases, though, this condition implies that the poly-
hedron cannot be spherical (i.e. , the distances from the ver-
tices to the center of the polyhedron are not all equal), as in
the gyrobifastigium (GBF), the snub disphenoid (SD), and
the Johnson bicapped trigonal prisms (BTP and ETBP,
named biaugmented trigonal prism and elongated trigonal
bipyramid, respectively). For these polyhedra it is useful to
have at hand two versions: a Johnson nonspherical poly-
hedron (identified by the prefix J-) and a spherical one with
nonequivalent edges (labeled with the prefix s-). The snub
disphenoid (SD) is a 12-face convex deltahedron, also known
as Siamese dodecahedron. The gyrobifastigium (GBF), one
of the Johnson polyhedra, is an octahedron that can be de-
scribed as formed by fusing together two triangular prisms
through a square face, but rotated by 908 in such a way that
their trigonal axes are orthogonal. Both BTP and ETBP can
be thought of as trigonal prisms with two additional vertices,
on the center of two square faces in the biaugmented trigo-
nal prism (BTP) and on the center of the two triangular
faces in the elongated trigonal bipyramid (ETBP).

The third set of ideal shapes is constituted by polyhedra
on which we arbitrarily impose sphericity (all vertices at the
same distance from the center) while keeping the corre-
sponding topology and symmetry. These are the hexagonal
bipyramid (HBPY), the triangular dodecahedron (DD, the
spherical version of the snub disphenoid), and the spherical
versions of the Johnson bicapped trigonal prisms (s-BTP
and s-ETBP). In the case of the triangular dodecahedron,
sphericity and symmetry are not enough to provide an un-
ambiguous definition, and we therefore adopted the geome-
try that corresponds to a hard-spheres model. The dodeca-
hedron has the same topology and symmetry (D2d) as the
snub disphenoid. However, the dodecahedron is spherical,
while the snub disphenoid is not, and the faces of the
former are nonregular triangles, whereas those of the latter
are equilateral triangles. The CShM of the SD and the DD
relative to each other, SSD(DD)=2.85, gives us a quantita-
tive idea of the significant difference between these two

shapes, in spite of their identical topology and symmetry. In
the case of the heptagonal pyramid (HPY) we arbitrarily
impose the restriction that the central atom, if present, lies
in the basal plane.

Shape maps and interconversion pathways : In a CShM
structural analysis of a given molecule, we can compare the
measures obtained with respect to the different ideal poly-
hedra and decide which of them best describes the molecu-
lar geometry by just choosing the smallest CShM value. This
numerical value also gives an indication of how distorted
the structure is from the reference shape. Let us consider as
simple examples the coordination polyhedra formed by the
metal and donor atoms in the following compounds: the
purely organometallic[18] [Re(CH3)8]

2�, the anionic complex
[Y(hfacac)4]

� (hfacac =hexafluoroacetylacetonate),[19] and
[W(CN)8]

4� in its hydrated bipyridinium salt.[20] The shape
measure of the first complex relative to the square antiprism
is 0.21, whereas its measures relative to the dodecahedron
and the bicapped trigonal prism are 2.33 and 2.89, respec-
tively, and those relative to the other reference polyhedra
are even significantly larger, so we can identify this coordi-
nation polyhedron unequivocally as a square antiprism. In
the second case, S(DD) =0.18, while S(SAPR) =1.94 and
other shape measures are even larger, that is, the coordina-
tion sphere is clearly dodecahedral. Finally, the octacyano
complex has rather similar values of the shape measures rel-
ative to the dodecahedron and the square antiprism (0.75
and 0.88, respectively), and values larger than 2.4 for other
reference shapes, and this precludes a clear description of its
geometry as either DD or SAPR. However, if we calculate
the deviation of such a molecule from the DD–SAPR inter-
conversion path, we obtain a rather small value (0.06) that
allows us to describe its coordination polyhedron as inter-
mediate between these two reference shapes.

To be more precise, we should be able to tell not only by
how much, but also in which direction, the geometry is dis-
torted. Two tools can be of help for that task. One consists
of representing the CShM data in scatterplots of the shape
measures relative to two ideal polyhedra, which we have
named shape maps.[5] Since specific distortions appear in the
shape maps as well-defined lines, the position of a given
molecule in the shape map offers us good hints to the likely
distortion, although this technique does not always give an
unequivocal description of the distortion. The other tool,
the path deviation functions defined by us recently,[7] indi-
cates whether a molecular structure lies along the path for
interconversion between two polyhedra or, more precisely,
by how much it deviates from that path. The use of shape
maps and path deviation functions to describe distortions
from ideal geometries provides us an alternative to geomet-
rical descriptions in terms of angles and bond lengths. Even
if we are more familiar with the latter method, the descrip-
tion of distortions in terms of the distance from two ideal
shapes is no less intuitive and has some advantages: 1) In
some cases for which a single angular parameter describes a
geometrical distortion pathway (e.g., the square–tetrahedron
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interconversion) the shape measures approach is equiva-
lent.[7] 2) The CShM approach allows us to compare on the
same scale distortions of a given structure toward different
shapes, for instance, a Bailar twist and a tetragonal Jahn–
Teller distortion in a hexacoordinate complex. 3) It also
allows us to compare distortions of the coordination spheres
of molecules with different numbers of vertices, for example,
it shows that the spread pathway connecting the square and
the tetrahedron is equivalent to the interconversion of the
cube and the octagon.[7] 4) Distortions that cannot be easily
described in terms of a single geometrical parameter or
whose distortion coordinates are not so intuitive (e.g., the
interconversion of the eight-vertex triangular dodecahedron
and the cube) are nicely described in terms of shape mea-
sures. In this section we briefly describe two shape maps for
eight-vertex polyhedra and the corresponding path deviation
functions.

For the eight-vertex polyhedra, the CShMs of each refer-
ence polyhedron relative to the others are given in Table 2.
Furthermore, their CShM values relative to the cube and to
the square antiprism are represented in a shape map
(Figure 1, top). In both cases we can see that the dodecahe-
dron, the snub disphenoid, the square antiprism, and the bi-
capped trigonal prism are very close to each other. Also sep-
arated by small distances are two related shapes, the cube
and the triakis tetrahedron. The rest of the distances be-
tween reference polyhedra are rather large. In particular,
each of the following figures is quite far from all other
shapes: HBPY, HPY, GBF, ETBP, and OP. Interestingly,
the difference between the spherical and Johnson versions
of the bicapped trigonal prism, J-BTP and s-BTP, is reflect-
ed in a nonnegligible CShM value of these polyhedra rela-
tive to each other (1.439). Such a difference is still more
pronounced between the J-ETBP and s-ETBP ideal poly-
hedra (CShM of 6.578).

In Figure 1 we can also represent the paths for polyhedral
interconversion, either obtained by imposing a certain geo-
metrical distortion on a molecular model or through the
minimal distortion paths[7] described below. Note that in the
SAPR–CU map those structures occupying the positions of
the square antiprism (S(SAPR)= 0) or of the cube
(S(CU) =0) can be unequivocally identified with those ideal
polyhedra. However, a structure that occupies the position

corresponding to another ideal polyhedron in the shape map
does not necessarily correspond to that polyhedron. Hence,
we need to verify that the CShM corresponding to that ideal

Table 2. Reciprocal shape measures between reference eight-vertex polyhedra (see Scheme 1 and Table 1 for drawings and names).

SD SAPR J-BTP CU TT HBPY GBF J-ETBP HPY OP

DD 2.847 2.848 3.361 7.952 8.686 15.678 15.461 30.496 24.794 32.135
SD 0 5.362 3.002 14.257 12.669 19.555 10.049 25.962 27.215 30.131
SAPR 0 2.843 10.989 11.838 18.458 17.259 28.515 24.535 26.120
J-BTP 0 13.507 13.073 18.594 13.674 24.959 25.397 28.258
CU 0 0.953 8.395 18.811 25.086 30.612 38.311
TT 0 9.260 19.536 25.675 29.983 38.883
HBPY 0 11.014 27.195 23.666 32.421
GBF 0 25.274 27.472 35.766
J-ETBP 0 26.937 34.936
HPY 0 22.809
OP 0

Figure 1. Shape map in the cube–square antiprism space (top) and in the
square antiprism–dodecahedron space (bottom), the positions that the
ideal polyhedra (Scheme 1) occupy in those maps, and some of their in-
terconversion paths.
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polyhedron is close to zero before making such a stereo-
chemical assignment. In the same way, the fact that the cube
appears along the path between the dodecahedron and the
hexagonal bipyramid in the DD–SAPR map (Figure 1,
bottom) does not necessarily mean that the interconversion
between the dodecahedron and the hexagonal bipyramid
passes through a cubic shape, since we are looking at a two-
dimensional map of geometrical data in a 3N-dimensional
space.

Note that a wide variety of shape maps are available to
us, as many as the pairs of reference polyhedra we can
choose, or 55 different maps in the present case considering
the 11 shapes presented in Scheme 1. As in real life, we use
the map that best describes the region we wish to explore,
that is, the one related to the two most common shapes for
the set of structures we are analyzing. Thus, in this work we
use essentially the dodecahedron–square antiprism map (see
discussion and Figure 5 below), although in specific cases
two other maps will be used.

The minimal distortion pathways between two reference
shapes can be defined in terms of CShMs.[7] Thus, we can de-
termine how close a given structure is to an interconversion
pathway if we know its shape measures relative to the two
reference polyhedra. This is done by calculating the path de-
viation function presented in Equation (2), which deter-
mines the degree of deviation of structure X from the mini-
mal distortion interconversion pathway between reference
shapes P and T. The values of the mutual shape measures
between pairs of ideal polyhedra SP(T) are presented in
Table 2.

DXðP,TÞ � 1

arcsin
ffiffiffiffiffiffiffiffi
SPðTÞ
p

10

�
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffi
SXðPÞ

p
10

þ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
SXðTÞ

p
10

�
�1

ð2Þ

Transition-metal coordination compounds: an overview: The
experimental data analyzed in this section were retrieved
from the Cambridge Structural Database[21] (CSD, ver-
sion 5.25) by searching for compounds with a metal atom
defined in the database as octacoordinate and belonging to
Groups 3–12 for which the following restrictions were ap-
plied: no p-bonded ligands were allowed and structures with
disorder or with agreement factors R greater than 10 %
were disregarded. As donor atoms we included all elements
of Groups 14–17 and hydrogen. A total of 501 compounds
were found, comprising 531 crystalographically independent
structural data sets. The distribution of those compounds
along the transition-metal series is shown in Figure 2. Octa-
coordination is most common for early transition metals
(Groups 3–7) of the second and third series and for the
heavier elements of the Zn group, and Zr is the most
common octacoordinate transition metal.

A bird�s-eye view of the relative importance of the differ-
ent ideal polyhedra in octacoordinate transition-metal com-
plexes can be gained by looking at the shape map obtained
from a scatterplot of the CShMs of the experimental struc-

tures relative to the dodecahedron and the square antiprism
(Figure 3, bottom). We first note that some regions of the
map, delimited by lines corresponding to some of the stud-
ied distortions, are geometrically forbidden, as previously
discussed for tetracoordinate compounds.[4] By comparison
with the position of the ideal structures in a similar shape

Figure 2. Periodic distribution of octacoordinate transition-metal com-
plexes in the CSD.

Figure 3. Location of the transition-metal octacoordinate complexes re-
trieved from the CSD in two shape maps. The continuous lines corre-
spond to polyhedra interconversion paths identified in Figure 1.
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map (Figure 1) we see that the most common shapes are in
the region around the SAPR, the DD, and the BTP (the
lower left corner of the map), although a good number of
structures appear along the rightmost branch of the map,
which was seen (Figure 1, bottom) to correspond to distor-
tions from the dodecahedron toward the cube or hexagonal
bipyramid. Moreover, no structures correspond to the hep-
tagonal pyramid or octagon. However, two points at the left-
most part of the DD-SAPR map, clearly differentiated from
the rest of the structures, appear right in the middle of the
flattening pathway that leads from the square antiprism to
the planar octagon, to be discussed below. The most salient
feature of these shape maps is that most structures are
found at a significant distance from the ideal polyhedral
shapes; hence, the polyhedron that best describes each ge-
ometry cannot be assigned on the basis of only one specific
shape map, and we should perform a more detailed analysis
to obtain some idea about the relative importance of the
less common shapes.

Several ideal eight-vertex structures were classified by
Muertterties and Wright[8] into two groups: low-energy
structures (DD, SAPR, and BTP) and high-energy struc-
tures (ETBP, CU, HPY, and HBPY). This classification is
consistent with the electrostatic repulsion coefficients given
by Kepert,[10] which indicate much less ligand–ligand repul-
sion for the first three polyhedra, and is also in agreement
with a d orbital energy scheme obtained from the angular
overlap model[22] (AOM) shown in Figure 4. Optimum in-
volvement of d orbitals in metal–ligand bonding occurs for
these three structures and leaves at most one d orbital as
nonbonding, whereas for the rest of the shapes two d orbi-
tals cannot be involved in metal–ligand bonding for reasons
of symmetry and are therefore nonbonding. The distribution
of coordination polyhedra found among octacoordinate
transition-metal complexes seems to confirm that the do-

decahedron, the square antiprism, and the bicapped trigonal
prism are energetically favored, and from here on we will
refer to these shapes as low-energy shapes, though only
when referring to coordination compounds.

We can assign the polyhedron that best describes the co-
ordination sphere of the octacoordinate metal atom in each
compound by calculating their CShMs relative to the vari-
ous polyhedra in Scheme 1 and thus obtain a perspective
view of the stereochemical preferences of experimental
structures. Among the structures that are significantly dis-
tant from the ideal shapes, we are still able to identify many
as being very close to the interconversion path between two
such shapes, according to the path deviation functions de-
scribed above.

Since we have seen (Table 2) that the distances between
the low-energy eight vertex polyhedra (DD, SAPR, and
BTP) are rather small compared to the distance between
these and the rest of the polyhedra, we have classified the
structures first as belonging to either the region of the low-
energy polyhedra or to that of the other polyhedra, within a
CShM of 2.0. The structures that remain unclassified are
then analyzed to see if they are adequately described as
lying along a given polyhedral interconversion path, with a
tolerance of D(path)�0.5. The structures belonging to the
low-energy region of the shape map can then be assigned to
one of the low-energy polyhedra with a more stringent crite-
rion (S(polyhedron)�0.7) than for the other polyhedra, or
to one of their interconversion paths (within D(path)�0.3).
Once all these structures have been classified, we are left
with 12.9 % of unassigned structures that can be adequately
described neither by one of the polyhedra under consider-
ation nor as lying along their interconversion paths. The tol-
erance factors that we have applied for our classification
scheme are somewhat arbitrary, and the actual portion of
structures assigned to each polyhedron or interconversion
path can vary with a different choice. However, we obtain a
quite interesting qualitative picture (Figure 5) that is not sig-
nificantly affected by the numerical criteria used.

According to the distribution shown in Figure 5, several
interesting observations can be made: 1) A relatively small
number of structures can be unambiguously described as do-

Figure 4. Energy diagram for the d orbitals in octacoordinate environ-
ments, as predicted by the angular overlap model (up to second order).
Standard es units are used for the orbital energies.

Figure 5. Distribution of eight-vertex polyhedra among transition-metal
coordination compounds. LE refers to the “low-energy” polyhedra (DD,
SAPR, and BTP); for the other abbreviations, see Scheme 1.

Chem. Eur. J. 2005, 11, 1479 – 1494 www.chemeurj.org � 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 1485

FULL PAPEREight-Vertex Polyhedra

www.chemeurj.org


decahedral or square-antiprismatic (7.5 and 10.4 %, respec-
tively, with the numerical criteria applied here), while only
one bicapped trigonal-prismatic structure was found within
the tolerance margin adopted. 2) These low-energy struc-
tures together with intermediate geometries (labeled “other
low E” in Figure 5) and their distortions along polyhedral
interconversion paths represent a majority of the analyzed
compounds (a total of 52.7 %). 3) A substantial number of
structures are best described as being along the paths from
the hexagonal bipyramid to the low-energy structures
(24.1 %). 4) A small but nonnegligible fraction of the struc-
tures can unambiguously be identified as cubes (3.8 %) or as
hexagonal bipyramids (4.1 %).

We also analyzed the polyhedral distribution of the data
set of transition-metal complexes by electron configuration.
As expected from the distribution throughout the periodic
table discussed above (Figure 2), we found that the most
common configuration among octacoordinate compounds is
d0. Significant numbers of compounds are also found for d1,
d2, and d10 configurations, while only a few examples are
found for the remaining dn configurations. The d0 to d2 con-
figurations exhibit similar stereochemical behavior, with
most of the structures in the region corresponding to SAPR,
DD, BTP, and their interconversion paths, as illustrated in
Figure 6 a for the case of d0 compounds, although a few
nearly cubic structures are also found with this configuration
(leftmost portion of Figure 6 a) that correspond to [YIIIL2]
and [LaIIIL2], where L is a tripod[23] or a tetradentate macro-
cyclic ligand.[24] That many structures fall along the SAPR–
DD interconversion pathway can be seen in the correspond-
ing map for the d1 compounds (Figure 6 b). The trends
found for complexes of the d10 ions are clearly different
from those of the early transition metals (Figure 6 c):
1) nearly half of the structures correspond to geometries
along the CU–SAPR interconversion pathway, 2) some
26 % of the structures can be classified as hexagonal bipyra-
mids, and 3) no dodecahedral structures appear in the d10

family.

Stereochemical preferences due to ligands

Transition-metal octacyano complexes : A good example of
the structural variability of octacoordinate complexes in the
absence of constraints imposed by bi- or multidentate li-
gands is provided by the family of octacyano complexes.[13]

The sample of octacyano complexes analyzed by us is com-
posed of 59 structural data sets of 53 compounds of MoIV,
MoV, WIV, WV, NbIII, and NbIV. Their stereochemical behav-
ior is best appreciated in the SAPR–DD shape map (Fig-
ure 7 a). The molecular structures of these cyano complexes
cover practically the entire interconversion path between
these two polyhedra, and is summarized by their calculated
deviation functions (Figure 7 b).

Bidentate ligands : We have analyzed the homoleptic com-
plexes of bidentate ligands 4–6 of general formula
[M(chel)4] (chel =nitrate, dithiocarbamate, oxalate, or b-di-

ketonate), for which the number of crystallographically in-
dependent octacoordinate metal atoms found were 12, 41, 7,
and 77 (in the last case including non-transition metals), re-
spectively. The results for these compounds can be best vi-
sualized in the DD–SAPR shape map (Figure 8). The biden-

Figure 6. Shape maps for transition-metal coordination complexes with
different electronic configurations a) d0, b) d1, and c) d10. The lines shown
in the square antiprism–cube map correspond (from left to right) to the
CU–HBPY, CU–SAPR, and SAPR–OP interconversion paths, whereas
those in the dodecahedron–square antiprism maps correspond to the
SAPR–OP, SAPR–DD, and DD–CU-HBPY paths (see Figure 1).
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tate ligands with larger bites (b-diketonato 6 and oxalato 5
with normalized bites of 1.41 and 1.31, respectively, with
metals of the first transition series) appear in complexes
with dodecahedral, square antiprismatic, and intermediate

geometries. The complexes with the smaller ligands 4, such
as dithiocarbamato or nitrato (normalized bites of 1.21 and
0.96), however, appear in dodecahedral structures, albeit sig-
nificantly distorted in most cases toward the cube because
of the small size of the edges spanned by the bidentate li-
gands, and eventually reaching the cube in two cases that
correspond to the central Co atom in two nonanuclear com-
pounds,[25] coordinated by the doubly deprotonated form of
di-2-pyridyl ketone, [(2-C5H5N)2CO2]

2�, with shape measures
relative to the cube of 1.66 and 1.82.

Tripod ligands : Complexes with tripod ligands, [M(tripod)2],
with the same topology as those of 7 a–7 b are relatively
common (49 structural data sets found). The most common

shape here is the dodecahedron (76 %), but cubic structures
are also frequent (22 %), probably due to the fact that the
trigonal symmetry of these tripods is well adapted to span
three neighboring edges of the cube with a common vertex
occupied by the apex of the tripod (7 c).

Bis(tetradentate macrocycle) complexes : In the complexes
with two tetradentate phthalocyaninato (skeleton as in 8
with X=N) or porphyrinato (8 with X=CH) ligands, even
if the macrocyclic ligands are significantly corrugated, their
four N donor atoms remain coplanar, and thus sandwich
structures result that can in principle be cubic (eclipsed con-
formation of the two ligands), square antiprismatic (stag-
gered conformation), or square metaprismatic (with any in-
termediate rotation angle). The cubic and square antipris-
matic shape measures for the molecular structures of such

Figure 7. Shape measures of octacyano complexes in the DD–SAPR
shape map (a) and histogram of their deviation functions from the DD–
SAPR minimal distortion interconversion path (b).

Figure 8. Shape map for tetrakis(didentate) complexes relative to the do-
decahedron and the square antiprism. The continuous lines shown corre-
spond (from left to right) to the SAPR–OP, SAPR–DD, and DD–CU-
HBPY interconversion paths. *: small-bite bidentate ligands 4 ; &: ligands
with topology 5 ; and ~: b-diketonates 6.
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compounds are very close to SAPR, in some cases slightly
distorted along the tetragonal axis. In the case of the analo-
gous sandwich complexes with the O4 crown ligand 9, the re-
sults are similar in spite of the enhanced flexibility of the
ligand.

Complexes with hexadentate crown ethers : The hexadentate
O6-crown ligands 10 can in principle occupy six nearly co-
planar coordination positions and allow two additional li-
gands to coordinate at axial positions in [M(O6-crown)L2]
compounds with hexagonal-bipyramidal structure. This is
what is found according to their small HBPY shape mea-
sures, which lie in the range 0.2<S(HBPY)<1.6 (16 struc-
tures of 13 HgII and CdII compounds).

Octadentate encapsulating ligands : The trigonal symmetry of
the [2.2.2]cryptand ligand 11 is suitable for either an elon-
gated trigonal bipyramid (ETBP) or a cube, the latter re-
quiring a twisted ligand to provide a cubic geometry of the
donor atoms. Three such structures were found for com-
plexes of HgII, CdII, and MnII with octadentate [2.2.2]crypt-
and ligand 11,[26–28] and they all have nearly cubic geometries
with shape measures of 0.07,[28] 0.16,[3] and 1.09,[26] respec-
tively.

Tentacular octadentate ligands : We include in this category
ligands with a tetradentate macrocyclic skeleton that ex-
tends four tentacles with a donor atom at each end. Exam-
ples are the calixarenes 12 and derivatives of tetraaza mac-
rocycles such as 13. All coordination compounds with these
ligands (9 structures with ligand 12, 27 structural data sets of
21 compounds with ligand 13), including those of non-transi-
tion metal ions (e.g., rare earths, Na+ , Pb2+ , or Bi3+) have

geometries that are rather close to the interconversion path
between the cube and the square antiprism, as revealed by
their path deviation functions (D=0.08 for 13, 0.08�D�
0.32 for 12).

Summary of stereochemical preferences by ligand : The
trends found for the families of complexes with the ligands
analyzed are schematically summarized in Figure 9, where a

circle indicates a preferred polyhedron and a bar indicates
that structures are found along the path between the corre-
sponding polyhedra. However, the result for the cryptate
family should be treated with caution because of the small
number of structures found.

Less common structures : Among the structures that appear
far from the common ideal polyhedra, our shape maps have
allowed us to detect some special cases. Two interesting ex-
amples are [CeCl4(NO3)2]

2� and [Cd(NO3)4]
2�,[29] which have

gyrobifastigium geometries. Even though the corresponding
CShM values are not small (4.29 and 4.34, respectively), the
large distance between GBF and all other ideal eight-vertex
polyhedra (Table 2) makes the assignment of this shape un-
equivocal, as can be appreciated in a perspective view of the
molecular structure of the latter (Figure 10), in which its dis-
tortion from the ideal shape is also evident.

The octagonal geometry was not found for the coordina-
tion sphere of a metal atom, but we were able to find two
structures that are relatively close (the rightmost points in
Figure 3, top), corresponding to the [MAs8]

n� complexes
(M= NbV or MoVI),[30] in which the metal atom sits at the
center of a nonplanar As8 ring. Although the shape mea-
sures relative to the octagon and to the square antiprism are
rather large for these compounds (see Table 3), the path de-

Figure 9. Preferred polyhedra for different families of octacoordinate
transition-metal complexes, grouped by ligands. A circle indicates the
preferred polyhedron, a bar indicates that structures are found for the
two polyhedra at the extremes and for intermediate geometries along the
interconversion path.
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viation function shows that these structures are right on the
path that connects these two polyhedra (deviation functions
less than 0.001 in both cases). Note that the two coordina-
tion gyrobifastigia and the two compressed square anti-
prisms occupy the same region in the SAPR–CU map even
though they have two quite different shapes. Thus, the posi-
tion of a structure in a shape map provides a good hint to
the closest polyhedron but not an unequivocal assignment,
except for points that are close to the position of either of
the two polyhedra used as references in the map.

Edge-bonded polyhedra : In contrast to coordination poly-
hedra, in which the vertices are held in place through bonds
to a central atom, in the edge-bonded polyhedra,[15] the
edges correspond to chemical bonds. The most representa-
tive case among eight-vertex polyhedra is the long sought
for cubane,[31] C8H8, as well as its derivatives and Group 14
analogues with Si8, Ge8, or Sn8 skeletons. In this case all the
edges are occupied by bonds, but one can conceive poly-
hedra in which only a fraction of the edges do the job of set-
ting the vertices in place. We call these edge-deficient poly-
hedra[15] and the prototypical case is the As4S4 polyhedron
in realgar, in which only ten of the fourteen edges of a gyro-
bifastigium are occupied by As�S bonds, but which still suf-
fice to organize the eight atoms in the shape of this interest-
ing polyhedron (Figure 10, right). In this section we analyze
the shapes of these and related edge-bonded polyhedra.

Cubanes : The cubanes form a wide family of compounds,
named after the prototypic alkane C8H8, in which the eight
vertices of the skeletal polyhedron are connected by 12
direct chemical bonds. In a regular cube the edges meet to
form angles of 908, whereas vertices in cubane are occupied
by sp3 C atoms that prefer bond angles of around 1108.

Thus, it is natural to ask how cubic are cubanes? Before an-
swering that question we should distinguish the homocu-
banes, with all vertices occupied by the same element, and
the heterocubanes, M4X4, in which alternate vertices are oc-
cupied by a metal atom M and a main group element X,
such as sulfur or oxygen.

Among the homocubanes with E8 skeletons, we have re-
trieved a total of 112 structures with E=C, Al, Si, or Sn.
The low values of their shape measures relative to the cube
confirm that they are nearly perfect cubes (the CShM values
are less than 0.3, and most structures have values below
0.05). Among the transition-metal heterocubanes M4X4 we
have retrieved 171 oxocubanes (X=O) and 239 thiocubanes
(X=S). In this family, significant distortions from the ideal
cube are found. The scatterplot of the CShMs relative to
CU and TT reveal a complex stereochemical behavior
(Figure 11), with a number of structures close to the perfect

cube but also many significantly distorted cubes. Our analy-
sis of such structures in terms of continuous shape measures
reveals the presence of two main types of distortions from
the ideal cube. In the first type, exhibited by the heterocu-
banes, the M4 and X4 groups retain their tetrahedral shape,
but the two tetrahedra differ in size. Let us recall that in the
regular cube the two composing tetrahedra are of exactly
the same size, whereas the triakis tetrahedron is composed
of two tetrahedra whose center-to-vertex distances are in a
ratio of 1.218. A representation in the shape map of such a
distortion of the cube (Figure 11, continuous line) with re-
tention of the tetrahedral symmetry seems to represent the
lower limit for all possible structures, and a large number of
experimental structures are found to be practically along
that path. The second type of distortion is shown by the
large number of structures that significantly deviate from
this path. A convenient way to reveal these distortions is to
plot the deviation function of the M4X4 core from the CU–
TT path as a function of the average of the tetrahedral mea-

Figure 10. Left: Molecular structure of [Cd(NO3)4]
2�, showing its approxi-

mate gyrobifastigium (GBF) geometry. Only Cd and O atoms shown for
simplicity; the sticks do not correspond to bonds, but are shown to illus-
trate the edges of the polyhedron. Right: Gyrobifastigium structure of
As4S4 in realgar, in which the sticks now represent both chemical bonds
and polyhedral edges.

Table 3. Shape measures of two As8
8� complexes relative to the octagon

(OP) and to the square antiprism (SAPR), and path deviation functions.

Compound S(OP) S(SAPR) D(OP–SAPR)

[NbAs8]
3� 8.13 6.00 0.00

[MoAs8]
2� 9.05 5.24 0.00

Figure 11. Shape map of heterocubanes relative to the cube and the tria-
kis tetrahedron, showing the M4O4 (*) and M4S4 (~) transition-metal
compounds together with models of compounds of two tetrahedra (* and
continuous line), including a cube and a triakis tetrahedron.
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sures of its M4 and X4 fragments (Figure 12). The deviation
from that path correlates well with the deviation of the M4

and/or X4 groups from the ideal tetrahedron. In other
words, the X atoms asymmetrically bridge three M atoms
that form a face of the M4 tetrahedron.

Interesting sets of cubes are those that appear in the cen-
tral Mn4O4 core of the single-molecule magnet Mn12 com-
pounds, for which 28 structures were found by a CSD
search. A CShM analysis of these cores along the same lines
applied here for heterocubanes shows unequivocally
(Figure 13) that they are significantly distorted from a cube
and that such a distortion has to do with local asymmetry
rather than with the different sizes of the Mn4 and O4 tetra-
hedra. This type of analysis may be useful for the design of
new single-molecule magnets, since the anisotropy of the
central core is most likely transmitted toward the exterior of
the Mn12 molecule, and such anisotropy is of the utmost im-
portance in determining the quantum tunneling properties
of these spin systems.

Gyrobifastigia : The full gyrobi-
fastigium, an eight-vertex poly-
hedron (GBF, Scheme 1), has
fourteen edges. We found struc-
tural data for only one mole-
cule with fourteen bonds con-
necting eight atoms that repre-
sents a nearly perfect molecular
version of this uncommon John-
son polyhedron, namely,
[Cu8(AsSiMe3)4],[32] in which
the trimethylsilylarsenido li-
gands cap the square faces of
the gyrobifastigium as m4

bridges. However, we were able
to identify two versions of

edge-deficient gyrobifastigia (Table 4), one with ten edge
bonds, represented by the As4S4 molecules in realgar and by
related species such as P4(NR)4

[33] (Te4S4)
2+ ,[34] Sb4(SbR)4,

and derivatives of tricyclo[3.3.0.03,7]octane (14); the 16 such
structures found all have CShM values between 8.6 and 9.8,
smaller than for other reference polyhedra. The other ver-
sion has twelve of the fourteen edges formed by chemical
bonds, as found in cunneane (pentacyclo[3.3.0.02,4.03,7.06,8]oc-
tane, 15, S(GBF)=8.8)[35] (Figure 14) In all such molecules,
the fact that some edges are chemical bonds (hence short

Figure 12. Deviation of M4O4 (*) and M4S4 (~) heterocubanes from the
cube to triakis-tetrahedron interconversion path as a function of the aver-
age of the tetrahedral shape measures of the X4 and M4 fragments.

Figure 13. Deviation of the Mn4O4 core of the Mn12 single-molecule
magnet compounds from the cube to triakis-tetrahedron path as a func-
tion of the average of the tetrahedral shape measures of the Mn4 and O4

fragments.

Table 4. Some gyrobifastigia, identified as having S(GBF) smaller than shape measures relative to all other
polyhedra considered.

Refcode Compound Polyhedron Edge bonds S(GBF)

coordination sphere
BEJFAX [Ce(NO3)2Cl4]

2� Ce@O4Cl4 0 4.24
IDAWOZ [Cd(NO3)4]

2� Cd@O8 0 4.39
edge-bonded polyhedra
EBUNOE [Cu8(AsSiMe3)4] Cu8 14 0.67

realgar As4S4 10 8.44
para-realgar As4S4 10 8.36
P4S4 P4S4 10 8.72

CEPLOY P4(NtBu)4 P4N4 10 8.92
GEJMOX S4Te4

2+ S4Te4 10 8.24
NOYWAZ C8H8O2 C8 10 8.69
RESRUC cunneane, C8Me8 C8 12 8.78
supramolecular architectures
YUBLAI [Mn8Sb4(m-O)4(m-EtO)20] Mn8 0 0.33
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distances) and some others are not bonded (long distances)
means that the regularity is perforce lost, and large CShM
gyrobifastigium values result. In spite of such large CShM
values relative to the gyrobifastigium, they are still signifi-
cantly smaller than those referred to all other analyzed poly-
hedra, consistent with their clear gyrobifastigium topology
and symmetry.

Square antiprisms : The square antiprism is nicely realized in
a Ga8(fluoren-9-yl)8 cluster[36] in which the 16 edges are
formed by Ga�Ga bonds. Its small deviation from the ideal
SAPR (CShM of 0.22) reflects the differences in distances
between the bonds forming the square faces (2.516(5) �)
and those linking these two faces (2.713(5) �). Although the
square antiprism is not a common geometry among transi-
tion-metal clusters, the use of the continuous shape mea-
sures allowed us to easily identify three examples with
nearly perfect square-antiprismatic structure, namely, Ni8,

[37]

Ru8,
[38] and Co8

[39] cores that have CShMs relative to the
SAPR of 0.14, 0.12, and 0.36, respectively.

Octanuclear clusters and supramolecular architectures : In
this case, our experimental data come from compounds (in
the CSD) with eight transition-metal atoms. A shape map of
these structures (Figure 15) reveals more geometric diversity
than found among eight-vertex coordination complexes, as
seen by comparing the scale of this map with those in Fig-
ures 3 and 6. In the present map, one can identify at first
sight a structure that is nearly linear, which corresponds to a
mixed-valent tetramer of Pt dimers with acetamido
bridges,[40] whose CShM value relative to a regularly spaced
linear chain of eight atoms is 0.55, which reflects alternating
Pt�Pt distances and zig-zag deviation from linearity. In addi-
tion, the identification of, for example, the structure of the
best molecular gyrobifastigium[41] (Table 4), [Mn8Sb4(m-
O)4(mEtO)20] (CShM =0.33), as well as a variety of octago-
nal M8 groups, such as Cr8 in [Cr8F8(pivalato)16]

[42]

(Figure 16), are good examples of the stereochemical diver-
sity. A variety of square antiprismatic and dodecahedral
structures are found in our reference structural set, with
varying degrees of distortion from the ideal polyhedra. An-
other interesting case of octanuclear architecture is that of
the FeMo cofactor in nitrogenase, which forms a Fe7Mo
cluster[43] with nearly perfect J-ETBP geometry (CShM=

0.02).

Inorganic solids : In this section we present an analysis of
the atomic coordination geometry in several representative

structures of extended solids. As expected, for structures in
which the cations occupy a crystallographic site with strictly
cubic symmetry, such as the rock salt and fluorite structures,
the cubic shape measures are zero within numerical accura-
cy, as seen in Table 5 for such compounds as CsCl, NaTl,
CaF2, ScH2, UO2, and ThO2.

Although in most cases the polyhedral classifications re-
flected in the classical review of Lippard[11] are confirmed
and put on a quantitative scale by our shape measures, the
earlier description of some of those structures is clearly
changed when a proper continuous shape measure analysis
is carried out. This is the case for ZrF4 and ZrOCl2·8 H2O,
for which a square antiprismatic structure was proposed, yet

Figure 14. Gyrobifastigium-like carbon skeleton of cunneane, pentacy-
clo[3.3.0.02,4.03,7.06,8]octane, as found in its octamethyl derivative.[35]

Figure 15. Shape map relative to the cubic and square antiprismatic
shape measures of octanuclear transition-metal compounds, differentiat-
ing those that are connected in a cyclic way (~) from those that are not
(*). Some reference polyhedra are indicated by solid squares (see
Scheme 1 for abbreviations).

Figure 16. Supramolecular octogonal architecture of the Cr8 group in a)
[Cr8F8(pivalato)16] and b) gyrobifastigium of the Mn8 skeleton in
[Mn8Sb4(m-O)4(m-Et)20].[41, 42]
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we find their dodecahedral shape measures (0.60 and 0.63,
respectively) to be much smaller than the corresponding an-
tiprism measures (2.49 and 2.23, respectively). Another in-
teresting case is that of HfF4·3 H2O, which was classified as a
square antiprism, whereas our shape measures of
S(SAPR) =1.03 and S(DD)=1.85 point to significant distor-
tion from the antiprism. The deviation function from the
DD–SAPR interconversion path for this compound gives a
practically negligible value (0.005) and clearly classifies such
a coordination polyhedron as intermediate between the do-
decahedron and the square antiprism, albeit slightly closer
to the antiprism. It is easy to find the bicapped trigonal
prism as a coordination polyhedron among solid-state com-
pounds (see Table 5), but these deviate significantly from
the ideal polyhedron because of the existence of element–el-
ement bonds between some of the vertices. For example, in
CrAs2 the As atoms form (As0)8 layers of fused hexagons
and (As�)8 chains. Thus, there are three quite different
edges of the BTP coordination polyhedron (Figure 17):

those of the capping triangular
faces that correspond to As�As
bonds (ca. 2.7 �), the edges of
the tetragonal faces bridged by
As3 moieties (ca. 3.3 �), and
the edges corresponding to the
bases of the trigonal prism,
which are nonbonded As···As
distances (ca. 3.7 �), and the
resulting significant distortion
from the ideal Johnson poly-
hedron is reflected in an
S(J-BTP) value of 2.71.

An apparently uncommon
shape that we can find among
the solids is the ETBP, as in
ReB2, which is also uncommon
among the octacoordinate
structures in molecular com-
plexes discussed above. The
large CShM value found for the
coordination sphere of Re in
this compound relative to the
Johnson polyhedron, S(J-
ETBP) =6.86, results because it
is much closer to the spherical

version of the elongated trigonal bipyramid with all Re�B
distances the same (see Table 5). However, even if we use
only the Johnson reference polyhedron, the comparison of
this CShM value with the shape measures relative to all
other reference polyhedra, all of which exceed 20 units,
clearly shows that the geometry of the ReB8 core is ETBP.

An illustrative example of how a combination of continu-
ous shape measures and path deviation functions can pro-
vide an excellent stereochemical description of the coordi-
nation sphere of a given atom in an extended solid can be
found in Y2Ti2O7. In this compound, the Y atom is coordi-
nated by eight oxygen atoms. Its smallest shape measures
relative to eight-vertex polyhedra are those for the cube
(2.10) and the hexagonal bipyramid (2.93). Since these
values are still large enough to indicate significant distortion
from either ideal shape, we look at its deviation from the
corresponding interconversion path, whose small value
(0.08) allows us to describe its geometry as intermediate be-
tween the cube and the hexagonal bipyramid.

Another example is provided by the garnet structure, as
pointed out by O�Keeffe and Hyde.[1] Garnets have the gen-
eral formula AII

3 MIII
2 (SiO4)3, where AII can be Ca, Sc, Mg,

Fe, or Mn, and MIII can be Al, Cr, or Fe. These authors
stressed that the coordination geometry of the AII ions in
the garnet structure is described by different authors as a
“skew cube”, a “distorted square antiprism”, or a “distorted
dodecahedron”. Let us see how the continuous shape meas-
ures can handle such a situation. To that end, we analyzed
the alkaline earth coordination sphere in a sample of garnet
structures (Table 6). In none of these cases do the shape
measures allow one to unequivocally assign an ideal poly-

Table 5. Shape measure of the closest polyhedron for a sample of octacoordinate atoms in extended solid
state structures.

Atom Compound CShM Atom Compound CShM

cube: CU bicapped trigonal prism: J-BTP (s-BTP)
Cs CsCl 0.00 C Fe3C 0.26 (0.83)
Na NaTl 0.00 Ta TaAs2 2.53, 2.68 (1.69)
Ca CaF2 0.00 Mo MoAs2 2.63 (1.83)
Sc ScH2 0.00 Os OsGe2 2.64 (1.87)
U UO2 0.00 Cr CrAs2 2.71 (1.78)
Th ThO2 0.00 V VP2 2.78 (1.95)

Cr CrP2 2.93 (2.07)
W WP2 3.09 (2.16)

elongated trigonal pyramid: s-ETBP
Re ReB2 0.03

dodecahedron: DD square antiprism: SAPR
Zr ZrF4 0.60 Zr Zr(IO3)4 0.08
Zr ZrOCl2(H2O)8 0.63 Ta Na3TaF8 0.14
Zr Li6BeF4ZrF8 0.89 Hf HfF4 0.22
Zr Zr(SO4)2·5H2O 0.91 Re K2ReF8 0.27
Os Os4Sn17 1.35 Cu CuAl2 0.34
Zr ZrSiO4 1.67 Nb NbSn2 0.42
Ti Ti(NO3)4 2.00 Rh RhSn3 0.45

snub disphenoid: SD Co CoIn2 0.76
C ScC3 0.51 Zr K2ZrF6 0.83

Hf HfF4·3 H2O 1.03
Hf HfGe2 2.89

Figure 17. BTP coordination sphere of the Cr atom in CrAs2. The black
cylinders correspond to chemical bonds, whereas the striped ones are
only shown to highlight the coordination polyhedron.
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hedral shape to the AO8 core, as seen by CShM values rela-
tive to the cube, the square antiprism, and the dodecahe-
dron between 2.4 and 4.7 (Table 6). However, in all cases
the deviation functions from the CU–SAPR path have small
enough values (the largest deviation from that path is 0.12)
to indicate that the coordination polyhedra are well de-
scribed as intermediate between the cube and the square an-
tiprism, also called square metaprisms. Interestingly, in the
analyzed garnets there is little variation in the degree of dis-
tortion from the cube. Another interesting observation for
the cases of andradite and grossular, for which X-ray diffrac-
tion structures have been reported at different tempera-
tures,[44] is that the AO8 metaprisms rotate toward the cube
as the temperature is lowered (Figure 18).

Conclusion

We have adopted eleven eight-vertex polyhedra as reference
shapes to gauge the stereochemisry of a variety of molecular
structures and substructures by using continuous shape
measures. In the shape space, there is a region in which sev-
eral such polyhedra are grouped: the triangular dodecahe-
dron, the snub disphenoid, the square antiprism, and the bi-
capped trigonal prism, coincident with the polyhedra that
were classified by Muetterties as low-energy geometries for
coordination compounds. In another region we find the

cube and the triakis-tetrahedron, and all the remaining ideal
polyhedra are scattered at large distances from these two re-
gions and from each other: the hexagonal bipyramid, the gy-
robifastigium, the elongated trigonal bipyramid, the heptag-
onal pyramid, and the octagon.

For some polyhedra there is no unique definition of ideal-
ity. In these cases we chose two alternative reference
shapes: the Johnson polyhedra, wherein all edges have the
same length but different distances from vertex to center,
and the spherical polyhedra, in which all such distances are
identical but not all the edges are equal. According to our
analysis of several families of compounds, we conclude that
the Johnson polyhedra seem best suited to define the geo-
metries of clusters and supramolecular architectures, where-
as their spherical counterparts are more adequate to de-
scribe atom coordination spheres.

The analysis of the experimental structures of transition-
metal coordination compounds indicates that octacoordina-
tion is most common among the early second- and third-row
transition metals and for Zn and Cd. Their stereochemical
distribution is dominated by the low-energy polyhedra (DD,
BTP, and SAPR), intermediate geometries, and geometries
along the path from those polyhedra toward the HBPY.
Small but significant numbers of structures correspond to
cubes (3.8%) and hexagonal bipyramids (4.1 %). The stereo-
chemical preferences show some differences for the metal
ions with d0 to d2 electron configurations and those with the
d10 configuration. While the former are scattered around the
low-energy polyhedra, with some clearly tracing the SAPR–
DD interconversion path, the latter are not found in do-
decahedral geometry. Some structures of coordination com-
plexes were also classified according to their ligands, and
the stereochemical preferences that emerge are schematical-
ly summarized in Figure 9.

The homocubanes of C, Al, Si, or Sn are nearly perfectly
cubic. In contrast, significant distortions from the cube can
be found among the M4X4 heterocubanes, which can be at-
tributed either to the combination of M4 and X4 nearly-per-
fect tetrahedra of different sizes or to the deviation of one
or both of these components from tetrahedricity.

Studying the shape measures of the coordination spheres
of metal atoms in ionic solids allowed us to detect in some
cases imprecise assignments of coordination polyhedra. For
example, application of the path deviation functions showed
that the Y atom in Y2Ti2O7 lies precisely along the path
from the cube to the hexagonal bipyramid, at similar distan-
ces from these two ideal polyhedra. Similarly, the coordina-
tion environment of the divalent ions in the garnet struc-
tures can be precisely described as square metaprisms, inter-
mediate between the cube and the square antiprism.

In summary, we have shown that we can describe within
the same framework of continuous shape measures and path
deviation functions the structures of a wide variety of eight-
vertex chemical systems in an accurate way. We have also
shown how easily one can detect unusual structures at a
glance in a shape map. Thus, we have identified several
structures that are nicely described by the thus far neglected

Table 6. Shape measures and path deviation functions for the coordina-
tion sphere of the divalent cation in some garnets.

Garnet CU SAP DD D(CU–SAP) D(CU–DD)

almandine 2.59 3.44 3.04 0.04 0.18
andradite 2.73 3.28 3.05 0.03 0.20
blythite 2.58 3.35 3.01 0.02 0.17
calderite 2.60 3.33 3.02 0.02 0.18
grossular 2.87 3.36 3.12 0.05 0.22
kaotite 2.56 4.72 3.82 0.12 0.25
knorringite 2.48 3.43 3.01 0.02 0.16
majorite 2.45 3.44 3.03 0.02 0.16
pyrope 2.64 3.41 3.04 0.03 0.18
skiagite 2.53 3.39 3.02 0.02 0.17
uvarovite 2.84 3.27 3.08 0.04 0.21

Figure 18. Changes in the cubic shape measure of the CaII environment
in andradite as a function of temperature.
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gyrobifastigium, as in two coordination compounds,
[Ce(NO3)2Cl4]

2� and [Cd(NO3)4]
2�, in the As4S4 realgar

structure, in some inorganic and organic analogues such as
cunneane, in a Mn8 supramolecular compound, and in a Cu8

cluster. Similarly we identified a Cr8 octagon and the geo-
metries of two [MAs8]

n� compounds, intermediate between
the octagon and the square antiprism, square antiprismatic
structures of Ga8, Ni8, Ru8 or Co8 clusters, and a nearly per-
fect elongated trigonal bipyramid in the Fe7Mo cluster of ni-
trogenase.
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